Molecular modeling for the teaching of abstract concepts in university-level general chemistry

Authors

  • Juan Pablo Sánchez Universidad Nacional del Litoral, Facultad de Ingeniería Química - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Química Aplicada del Litoral (IQAL). Santa Fe, Argentina.
  • Julia Bernik Universidad Nacional del Litoral, Facultad de Humanidades y Ciencias. Santa Fe, Argentina.
  • Paola Quaino Universidad Nacional del Litoral, Facultad de Ingeniería Química - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Química Aplicada del Litoral (IQAL). Santa Fe, Argentina.

Keywords:

ICT, modeling, chemistry, orbitals

Abstract

Molecular modeling is a widely used tool in the field of Chemical research. This tool can be incorporated into the university Chemistry classroom to enhance the learning processes of certain abstract concepts in this discipline. This study examined the effect of implementing a series of molecular modeling software for teaching practical General Chemistry classes on topics such as molecular geometry, orbitals, and orbital energy diagrams. An improvement was observed in the comprehension of orbitals and electronic structure.

References

Campbell, D. T., Cook, T. D. y Shadish, W. R., Jr. (2001). Experimental and quasi-experimental designs for generalized causal inference. Houghton Mifflin.

Chevallard, Y. (1985). La transposition didactique. Du savoir savant au savoir enseigné. Grenoble: La Pensee Sauvage.

Ebbing, D. y Gammon, S. (2007). General Chemistry (9th Ed.). Brooks Cole.

Gkitzia, V., Salta, K. y Tzougraki, C. (2020). Students’ competence in translating between different types of chemical representations. Chemistry Education Research and Practice, 21(1), 307-330. https://doi.org/10.1039/C8RP00301G

Gutow, J. (s.f.). Dr. Gutow’s Atomic Orbital Viewer. https://cms.gutow.uwosh.edu/gutow/Orbitals/Cl/Cl_AOs.shtml

Harris, A. D., McGregor, J. C., Perencevich, E. N., Furuno, J. P., Zhu, J., Peterson, D. E. y Finkelstein, J. (2006). The use and interpretation of quasi-experimental studies in medical informatics. Journal of the American Medical Informatics Association: JAMIA, 13(1), 16–23. https://doi.org/10.1197/jamia.M1749

Johnstone, A. H. (1982). Macro- and microchemistry. School Science Review, 64, 377–379.

Johnstone, A. H. (1991). Why is science difficult to learn? Things are seldom what they seem. Journal of Computer Assisted Learning, 7(2), 75–83.

Johnstone, A. H. (1997). Chemistry Teaching - Science or Alchemy? 1996 Brasted Lecture. Journal of Chemical Education, 74(3), 262.

Lamoureux, G. y Ogilvie, J. F. (2021). Orbitals in general chemistry, part I: the great debate. Química Nova, 44(2), 224–228. https://doi.org/10.21577/0100-4042.20170649

Levy, J., Chagunda, I. C., Iosub, V., Leitch, D. C. y McIndoe, J. S. (2024). MoleculAR: An augmented reality application for understanding 3D geometry. Journal of Chemical Education, 101(6), 2533–2539. https://doi.org/10.1021/acs.jchemed.3c01045

Li, X., Muñiz, M., Chun, K., Tai, J., Guerra, F. y York, D. M. (2022). Online Orbital Explorer and BingOrbital Game for inquiry-based activities. Journal of Chemical Education, 99(5), 2135–2142. https://doi.org/10.1021/acs.jchemed.1c01277

Maggio, M. (2018). Reinventar la clase en la universidad. Paidós.

Maggio, M. (2012). La enseñanza re-concebida: La hora de la tecnología. Nuevas tendencias culturales y su aplicación en las propuestas didácticas. Aprender para e-ducar con tecnologías, 1, 4-8. http://www.inspt.utn.edu.ar/pdf/aprender_para_educar.pdf

Marchak, D., Shvarts-Serebro, I. y Blonder, R. (2021). Crafting molecular geometries: Implications of neuro-pedagogy for teaching chemical content. Journal of Chemical Education, 98(4), 1321–1327. https://doi.org/10.1021/acs.jchemed.0c00306

Otterbein University (s.f.) Symmetry Resources at Otterbein University. https://symotter.org/

Ruddick, K. R., Parrill, A. L. y Petersen, R. L. (2012). Introductory molecular orbital theory: An honors general chemistry computational lab as implemented using three-dimensional modeling software. Journal of Chemical Education, 89(11), 1358–1363. https://doi.org/10.1021/ed2003719

Taber, K. S. (1997). Understanding chemical bonding: The development of A-level students’ understanding of the concept of chemical bonding [Tesis de doctorado, University of Surrey]. University of Surrey Open Research. https://openresearch.surrey.ac.uk/esploro/outputs/doctoral/Understanding-Chemical-Bonding-The-Development-of/99513707902346#file-0

Taber, K. S. (2013). Revisiting the chemistry triplet: Drawing upon the nature of chemical knowledge and the psychology of learning to inform chemistry education. Chemistry Education Research and Practice, 14(2), 156-168. https://doi.org/10.1039/C3RP00012E

Talanquer, V. (2010). Macro, Submicro, and Symbolic: The many faces of the chemistry “triplet”. International Journal of Science Education, 33(2), 179–195. https://doi.org/10.1080/09500690903386435

webMO. (2020). webMO a web-based interface to computational Chemistry packages. https://www.webmo.net/

Published

2025-01-22

How to Cite

Sánchez, J. P., Bernik, J., & Quaino, P. (2025). Molecular modeling for the teaching of abstract concepts in university-level general chemistry. Educación En La Química, 31(01), 6–16. Retrieved from https://educacionenquimica.com.ar/index.php/edenlaq/article/view/265

Issue

Section

Investigación en didáctica de la Química

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.