Una visión actual al mundo de los “surfactantes” y los sistemas organizados

Autores/as

  • Cristian C. Villa Universidad del Quindío, Programa de Química, Carrera 15 Calle 14 Norte, C.P. 630004 Armenia, Colombia.
  • Fernando Moyano Universidad Nacional de Río Cuarto, Departamento de Química, Universidad Nacional de Río Cuarto, Agencia Postal #3. C.P. X5804BYA Río Cuarto, Argentina.
  • Juana J. Silber Universidad Nacional de Río Cuarto, Departamento de Química, Universidad Nacional de Río Cuarto, Agencia Postal #3. C.P. X5804BYA Río Cuarto, Argentina.
  • R. Darío Falcone Universidad Nacional de Río Cuarto, Departamento de Química, Universidad Nacional de Río Cuarto, Agencia Postal #3. C.P. X5804BYA Río Cuarto, Argentina.
  • N. Mariano Correa Universidad Nacional de Río Cuarto, Departamento de Química, Universidad Nacional de Río Cuarto, Agencia Postal #3. C.P. X5804BYA Río Cuarto, Argentina.

Palabras clave:

sistemas organizados, surfactantes catiónicos, química sostenible, micelas inversas, vesículas

Resumen

Las micelas inversas son agregados supramoleculares que se forman al disolver moléculas anfifílicas (“surfactantes”) en solventes de baja polaridad. En ellos, la parte polar se ubica hacia el interior mientras que las colas hidrocarbonadas se extienden hacia el solvente orgánico no polar. Las vesículas, son otro tipo de agregados supramoleculares que se forman al disolver surfactantes en agua, donde una bicapa encierra un volumen de agua que puede atrapar diferentes solutos solubles en dicho solvente o, solubles en la bicapa no polar. Tanto las micelas inversas como las vesículas conforman lo que se denomina sistemas organizados. Los surfactantes cataniónicos, son la clase de anfifilo que resultan de la mezcla equimolar de algún surfactante aniónico y otro catiónico, donde se han removido completamente los contraiones. En esta divulgación se realizará una crónica de los sistemas organizados y  las moléculas que los forman.

Citas

Agazzi, F. M., Correa, N. M., y Rodriguez, J. (2014). Molecular dynamics simulation of water/BHDC Cationic Reverse Micelles. Structural Characterization, Dynamical Properties, and Influence of Solvent on Intermicellar Interactions. Langmuir, 30(32), 9643–9653.

Agazzi, F. M., Falcone, R. D., Silber, J. J., y Correa, N. M. (2011). Solvent blends can control cationic reversed micellar interdroplet interactions.

the effect of n- heptane:Benzene mixture on BHDC reversed micellar interfacial properties: Droplet sizes and micropolarity. Journal of Physical Chemistry B, 115(42), 12076–12084.

Anastas, P. T., y Kirchhoff, M. M. (2002). Origins, current status, and future challenges of green chemistry. Accounts of Chemical Research, 35(9), 686–694.

Anastas, P. T., y Warner, J. C. (1998). Green chemistry : theory and practice. Oxford: Oxford University Press.

Bangham, A. D., y Horne, R. W. (1964). Negative staining of phospholipids and their structural modification by surface-active agents as observed in the electron microscope. Journal of Molecular Biology, 8, 660–668.

Baruah, B., Roden, J. M. J. M., Sedgwick, M., Correa, N. M. M., Crans, D. C. D. C., y Levinger, N. E. N. E. (2006). When Is Water Not Water? Exploring Water Confined in Large Reverse Micelles Using a Highly Charged Inorganic Molecular Probe. Journal of the American Chemical Society, 128(13), 18–25.

Biasutti, M. A., Abuin, E. B., Silber, J. J., Correa, N. M., y Lissi, E. A. (2008). Kinetics of reactions catalyzed by enzymes in solutions of surfactants. Advances in Colloid and Interface Science, 136(1–2), 1–24.

Blach, D., Correa, N. M., Silber, J. J., y Falcone, R. D. (2011). Interfacial water with special electron donor properties: Effect of water-surfactant interaction in confined reversed micellar environments and its influence on the coordination chemistry of a copper complex. Journal of Colloid and Interface Science, 355(1), 124–130.

Bourrel, M., y Schechter, R. S. (1988). Microemulsions and related systems. Formulation, solvency and physical properties., Surfactant Sci. Ser. (vol 30). New York: Marcel Dekker.

Chatzidaki, M. D., Papavasileiou, K. D., Papadopoulos, M. G., y Xenakis, A. (2017). Reverse Micelles As Antioxidant Carriers: An Experimental and Molecular Dynamics Study. Langmuir, 33(20), 5077–5085.

Correa, N. M., Biasutti, M. A., y Silber, J. J. (1995). Micropolarity of reverse micelles of aerosol-OT in n-Hexane. Journal of Colloid And Interface Science, 172(1), 71–76.

Correa, N. M., Silber, J. J., Riter, R. E., y Levinger, N. E. (2012). Nonaqueous polar solvents in reverse micelle systems. Chemical Reviews, 112(8), 4569–4602.

De, T. K., y Maitra, A. (1995). Solution behaviour of Aerosol OT in nonpolar solvents. Advances in Colloid and Interface Science, 59(C), 95–193.

Dou, Y., Long, P., Dong, S., y Hao, J. (2013). Spontaneous transformation of lamellar structures from simple to more complex states. Langmuir, 29(42), 12901–12908.

Dutta, C., Svirida, A., Mammetkuliyev, M., Rukhadze, M., y Benderskii, A. V. (2017). Insight into Water Structure at the Surfactant Surfaces and in Microemulsion Confinement. Journal of Physical Chemistry B, 121(31), 7447–7454.

El Seoud, O. A., Correa, N. M., y Novaki, L. P. (2001). Solubilization of pure and aqueous 1,2,3-propanetriol by reverse aggregates of aerosol-OT in isooctane probed by FTIR and 1H NMR spectroscopy. Langmuir, 17(6), 1847–1852.

Evans, D. F., y Wennerström, H. (Eds.). (1994). The Colloidal Domain Where Physics, Chemistry, Biology, and Technology Meet (1st ed.). New York: VCH.

Falcone, R. D., Correa, N. M., y Silber, J. J. (2009). On the Formation of New Reverse Micelles : A Comparative Study of Benzene / Surfactants / Ionic Liquids Systems Using UV - Visible Absorption Spectroscopy and Dynamic Light Scattering. Langmuir, 25(37), 10426– 10429.

Florez Tabares, J. S., Correa, N. M., Silber, J. J., Sereno, L. E., y Molina, P. G. (2015). Droplet–droplet interactions investigated using a combination of electrochemical and dynamic light scattering techniques. The case of water/BHDC/benzene:n-heptane system. Soft Matter, 11(15), 2952–2962.

Gaucher, G., Satturwar, P., Jones, M. C., Furtos, A., y Leroux, J. C. (2010). Polymeric micelles for oral drug delivery. European Journal of Pharmaceutics and Biopharmaceutics, 76(2), 147–158.

Girardi, V. R., Silber, J. J., Falcone, R. D., y Correa, N. M. (2018). Micropolarity and Hydrogen-Bond Donor Ability of Environmentally Friendly Anionic Reverse Micelles Explored by UV/Vis Absorption of a Molecular Probe and FTIR Spectroscopy. ChemPhysChem, 1–8.

Girardi, V. R., Silber, J. J., Correa, N. M., Falcone, R. D. (2014). The use of two non-toxic lipophilic oils to generate environmentally friendly anionic reverse micelles without cosurfactant. Comparison with the behavior found for traditional organic non-polar solvents. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 457(1), 354–362.

Gutierrez, J. A., Falcone, R. D., Lopez-Quintela, M. A., Buceta, D., Silber, J. J., y Correa, N. M. (2014). On the investigation of the dropletdroplet interactions of sodium 1,4-bis(2-ethylhexyl) sulfosuccinate reverse micelles upon changing the external solvent composition and their impact on gold nanoparticle synthesis. European Journal of Inorganic Chemistry, (12), 2095-2102.

Halpern, B. S., Walbridge, S., Selkoe, K. A., Kappel, C. V., Micheli, F., D’Agrosa, C., Watson, R. (2008). A global map of human impact on marine ecosystems. Science, 319(5865), 948–952.

Hollamby, M. J., Tabor, R., Mutch, K. J., Trickett, K., Eastoe, J., Heenan, R. K., y Grillo, I. (2008). Effect of solvent quality on aggregate structures of common surfactants. Langmuir, 24(21), 12235–12240.

Kraft, J. C., Freeling, J. P., Wang, Z., y Ho, R. J. Y. (2014). Emerging research and clinical development trends of liposome and lipid nanoparticle drug delivery systems. Journal of Pharmaceutical Sciences, 103(1), 29–52.

Lasic, D. D. (1995). Liposomes: from physics to applications. Amsterdam: Elsevier Science B.V.

Lehn, J. ‐M. (1990). Perspectives in Supramolecular Chemistry—From Molecular Recognition towards Molecular Information Processing and Self‐Organization. Angewandte Chemie International Edition in English, 29(11), 1304–1319.

Lehn, J. M. (2002). Toward self-organization and complex matter. Science, (295), 2400-2403.

Mcneil, R., y Thomas, J. K. (1981). Benzylhexadecyldimethylammonium chloride in microemulsions and micelles. Journal of Colloid And Interface Science, 83(1), 57–65.

Menger, F., Lee, S., y Keiper, J. (1996). Differentiating unilamellar, multilamellar, and oligovesicular vesicles using a fluorescent dye. Langmuir, 12(1), 4479–4480.

Menger, F. M., y Keiper, J. S. (2000). Gemini surfactants. Angewandte Chemie - International Edition, 39(11), 1906–1920.

Moyano, F., Biasutti, M. A., Silber, J. J., y Correa, N. M. (2006). New insights on the behavior of PRODAN in homogeneous media and in large unilamellar vesicles. Journal of Physical Chemistry B, 110(24), 11838–11846.

Moyano, F., Falcone, R. F., Mejuto, J. C., Silber, J. J., y Correa, N. M. (2010). Cationic reverse micelles create water with super hydrogenbond-donor capacity for enzymatic catalysis: Hydrolysis of 2-naphthylacetate by ??-Chymotrypsin. Chemistry - A European Journal, 16(29), 8887–8893.

Moyano, F., Molina, P. G., Silber, J. J., Sereno, L., y Correa, N. M. (2010). An Alternative Approach to Quantify Partition Processes in Confined Environments: The Electrochemical Behavior of PRODAN in Unilamellar Vesicles. ChemPhysChem, 11(1), 236–244.

Moyano, F., Quintana, S. S., Falcone, R. D. D., Silber, J. J., Correa, N. M., Moyano, F., Correa, N. M. (2009). Characterization of multifunctional reverse micelles’ interfaces using hemicyanines as molecular probes. i. effect of the hemicyanines’ structure. Journal of Physical Chemistry B, 113(13), 4284–4292.

Moyano, F., Setien, E., Silber, J. J., y Correa, N. M. (2013). Enzymatic hydrolysis of N-benzoyl- L -tyrosine p -nitroanilide by chymotrypsin in DMSO-water/AOT/ n-heptane reverse micelles. A unique interfacial effect on the enzymatic activity. Langmuir, 29(26), 8245–8254.

Moyano, F., Silber, J. J., y Correa, N. M. (2008). On the investigation of the bilayer functionalities of 1,2-di-oleoyl-sn-glycero-3-phosphatidylcholine (DOPC) large unilamellar vesicles using cationic hemicyanines as optical probes: A wavelength-selective fluorescence approach. Journal of Colloid and Interface Science, 317(1), 332–345.

Myers, D. (2006). Surfactant science and technology (3rd ed.). New Jersey: Jhon Wiley and Sons Inc.

Nave, S., Eastoe, J., Heenan, R. K., Steytler, D., y Grillo, I. (2002). What is so special about aerosol-OT? Part III - Glutaconate versus sulfosuccinate headgroups and oil-water interfacial tensions. Langmuir, 18(5), 1505–1510.

New, R. R. C. (Ed.). (1997). Liposomes. A practical approach. New York: Oxford University Press inc.

Novaira, M., Biasutti, M. A., Silber, J. J., y Correa, N. M. (2007). New Insights on the Photophysical Behavior of PRODAN in Anionic and Cationic Reverse Micelles : From Which State or States Does It Emit ? Journal of Physical Chemistry B, 111(4), 748–759.

Novaira, M., Moyano, F., Biasutti, M. A., Silber, J. J., y Correa, N. M. (2008). An example of how to use AOT reverse micelle interfaces to control a photoinduced intramolecular charge-transfer process. Langmuir, 24(9), 4637–4646.

Novaki, L. P., Correa, N. M., Silber, J. J., Seoud, O. A. El, y El Seoud, O. A. (2000). FTIR and 1 H NMR Studies of the Solubilization of Pure and Aqueous 1 , 2-Ethanediol in the Reverse Aggregates of Aerosol-OT. Langmuir, 16(c), 5573–5578.

Odella, E., Falcone, R. D., Ceolín, M., Silber, J. J., y Correa, N. M. (2018). Structural Characterization of Biocompatible Reverse Micelles Using Small-Angle X-ray Scattering, 31 P Nuclear Magnetic Resonance, and Fluorescence Spectroscopy. The Journal of Physical Chemistry B, 122, 4366–4375.

Plapied, L., Duhem, N., des Rieux, A., y Préat, V. (2011). Fate of polymeric nanocarriers for oral drug delivery. Current Opinion in Colloid and Interface Science, 16(3), 228–237.

Quintana, S. S., Moyano, F., Falcone, R. D., Silber, J. J., y Correa, N. M. (2009). Characterization of multifunctional reverse micelles’ interfaces using hemicyanines as molecular probes. II: Effect of the surfactant. Journal of Physical Chemistry B, 113(19), 6718–6724.

Rothenberg, G. (2008). Catalysis : concepts and green applications. Weinheim, Germany. Wiley-VCH.

Salabat, A., Eastoe, J., Mutch, K. J., y Tabor, R. F. (2008). Tuning aggregation of microemulsion droplets and silica nanoparticles using solvent mixtures. Journal of Colloid and Interface Science, 318(2), 244–251.

Šegota, S., y Težak, D. (2006). Spontaneous formation of vesicles. Advances in Colloid and Interface Science, 121, 51–75.

Silber, J., Biasutti, A., Abuin, E., y Lissi, E. (1999). Interactions of small molecules with reverse micelles. Advances in Colloid and Interface Science, 82, 189–252.

Silva, B. F. B., Marques, E. F., y Olsson, U. (2011). Aqueous phase behavior of salt-free catanionic surfactants: the influence of solubility mismatch on spontaneous curvature and balance of forces. Soft Matter, 7(1), 225–236.

Stagnoli, S., Luna, M. A., Villa, C. C., Alustiza, F., Niebylski, A., Moyano, F., Correa, N. M., Falcone, R. D. (2017). Unique catanionic vesicles as a potential “Nano-Taxi” for drug delivery systems. In vitro and in vivo biocompatibility evaluation. RSC Advances, 7(9), 5372–5380.

Uchegbu, I. F., y Vyas, S. P. (1998). Non-ionic surfactant based vesicles (niosomes) in drug delivery. International Journal of Pharmaceutics, 172(1–2), 33–70.

Villa, C. C. (2014). Tesis Doctoral en Ciencias Químicas: En la Búsqueda de Sistemas Organizados Inteligentes para ser Utilizados como “Nanoreactores.” Argentina: Universidad Nacional de Rio Cuarto.

Villa, C. C., Correa, N. M., Silber, J. J., Moyano, F., y Falcone, R. D. (2015). Singularities in the physicochemical properties of spontaneous AOTBHD unilamellar vesicles in comparison with DOPC vesicles. Phys. Chem. Chem. Phys., 17(26), 17112–17121.

Villa, C. C., Moyano, F., Ceolin, M., Silber, J. J., Falcone, R. D., y Correa, N. M. (2012). A unique ionic liquid with amphiphilic properties that can form reverse micelles and spontaneous unilamellar vesicles. Chemistry - A European Journal, 18(49), 15598–15601.

Villa, C. C., Silber, J. J., Correa, N. M., y Falcone, R. D. (2014). Effect of the Cationic Surfactant Moiety on the Structure of Water Entrapped in Two Catanionic Reverse Micelles Created from Ionic Liquid-Like Surfactants. ChemPhysChem, 15(14), 3097–3109.

Villa, C. C., Silber, J. J., Falcone, R. D., y Correa, N. M. (2017). Subtleties of catanionic surfactant reverse micelle assemblies revealed by a fluorescent molecular probe. Methods and Applications in Fluorescence, 5(4), 44001.

Villa, C. C., Solis, A. K. C., Stagnoli, S., Luna, M. A., Moyano, F., Molina, P. G., Silber, J. J., Falcone, R. D., Correa, N. M. (2018). Anales de la Asociación Química Argentina, 105(2), 179–209.

Descargas

Publicado

30-12-2018

Cómo citar

Villa, C. C., Moyano, F., Silber, J. J., Falcone, R. D., & Correa, N. M. (2018). Una visión actual al mundo de los “surfactantes” y los sistemas organizados. Educación En La Química, 24(02), 74–94. Recuperado a partir de https://educacionenquimica.com.ar/index.php/edenlaq/article/view/197

Número

Sección

PARA PROFUNDIZAR

Artículos similares

1 2 3 4 5 6 7 8 9 10 > >> 

También puede {advancedSearchLink} para este artículo.